PHYSICAL REVIEW E VOLUME 59, NUMBER 6 JUNE 1999

Lagrange meshes from nonclassical orthogonal polynomials
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The Lagrange-mesh numerical method has the simplicity of a mesh calculation and the accuracy of a
variational calculation. A flexible general procedure for deriving an infinity of new Lagrange meshes related to
orthogonal or nonorthogonal bases is introduced by using nonclassical orthogonal polynomials. As an appli-
cation, different Lagrange meshes based on shifted Gaussian functions are constructed. A simple quantum-
mechanical example shows that the Lagrange-mesh method may become more accurate than the original
variational calculation with a nonorthogonal ba$81063-651X99)02706-3
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The continuous expansion of computing power leads to The aim of the present paper is to overcome this limita-
attempts for solving with numerical techniques increasinglytion and to show that many more types of Lagrange meshes
complicated problems. Consequently, efficient numerical aptinfinitely many in principlé can be constructed with little
proximations are needed more than ever. Ideally they shoulgompuytational effort. These meshes are still indirectly based
provide the highest accuracy with minimal computing efforts, | orthogonal polynomials, which belong to the broader non-

and maximal flexibility. classical family, i.e., which do not satisfy a second-order

For well conditioned problems, i.e., when indefinitely dif- . . . . i )
ferentiable solutions exist almost everywhere, global methg'ffer.entlal equa_tlon. By. selecting an apprpprlatg weight
ods involving information from the whole domain of defini- function and by introducing a change of variable in the ar-

tion of the studied problem provide better accuracy tharfument of the orthogonal polynomials, it becomes possible
local methods. Among global approaches, two important ané0 reproduce wide classes of variational bases. As an ex-
efficient approximations are the collocation and variationalample, we shall apply the general algorithm to deriving a
(or Galerkin methods[1,2]. Nearly optimal techniques can mesh related to shifted Gaussian functions and illustrate it by
be looked for by keeping the advantages of both approachem elementary application of quantum mecharEse Ref.
such as in the Lagrange-mesh method. __ [6] for preliminary results Equally spaced shifted Gaussian
The Lagrange-mesh method is an approximate variationg|inctions provide a flexible basis, which has proved useful in
calculauon_, which resembles a mesh calculation in the SPirifjifferent areas of atomic and nuclear physics. During the
of collocation [3—]. In the context of quantum mechanics, completion of this paper, Karabulut and Sibert published a

it is strikingly simple because the potential matrix is diagonal . ' . :
and only gi]n)\//olvez values of theppotential at the di1‘fgrentsmkmg analytical study of a mesh based on shifted Gauss-
jans [15]. Their mesh is different from the one we derive

mesh points. These properties proceed from the existence below but th laorithm al I
a Lagrange basis, i.e., an orthonormal family of infinitely (S€€ belowbut the present algorithm also allows construct-

differentiable functions, which vanish at all mesh points but"d the mesh of Ref.15]. S
one. When a variational calculation is performed with such a The Lagrange-mesh approach offers a close similarity
basis, the use of the associated Gauss quadrature leads té?8d sometimes provides identical resultsth the discrete-
diagonal potential matrix and to meshlike calculations. Invariable representatiofDVR) method[16,17. The main
spite of its extreme simplicity, this method is often very ac-difference lies in the philosophy of the methods. The
curate with rather small numbers of mesh points. Its accuraclagrange-mesh method is basically variational. Fulfilling the
is comparable to the accuracy of the more complicated variasondition of existence of a Lagrange basis entails a high
tional calculation performed with the associated Lagrangexccuracy of the result@t the cost of an imposed mesin
basis[5,6]. the DVR, the freedom of choice of the mesh is the most
The Lagrange-mesh method provides accurate results famportant aspect but a good accuracy is obtained when an
a number of bound-state and scattering calculations iimplicit Lagrange basis exists. The direct use of this basis
atomic and nuclear physid8—12. It should also be useful significantly simplifies the DVR. The Lagrange-mesh
in other areas of physics. However, until now, the developmethod may be considered as some accurate subset of the
ment of the method was hindered by the fact that only @DVR. Let us also briefly mention two other approaches re-
limited number of Lagrange meshes are availalild,14,3— lated to some extent with—but different from—the present
6]. Most of them are based on zeros of classical orthogongbaper. Schneidef18] uses a generalization of nonclassical
polynomials[3—6]. The condition of existence of a orthogonal polynomials. Wett al. [19] employ a basis in-
Lagrange mesh severely limited the number of possible unspired from Lagrange polynomials. Both methods fall out of
derlying variational bases and offered poor flexibility. No the Lagrange-mesh technique either because the Lagrange
alternative was available when the imposed repartition otonditions are not always satisfied in Rgf8] or because the
mesh points did not match the physical properties of a probbasis is not orthogonal in Ref19].
lem. Consider the one-dimensional Sctiimger equation,
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[T+V(X)](x)=E¥(x), ) possess two important properties, i.e., a simple three-term
recurrence relatiopsee Eq(15) below] and the Christoffel-
whereT=—d?/dx? is the kinetic-energy operatov,(x) isa  Darboux relation[20]. Let us denote as;(i = 1,N) the zeros
local potential, and/(x) is a bound-state wave function at of py(u),
energyE.

In a variational calculation, the wave function is approxi- Pn(u;) =0. (7)
mated by a linear combinatioR;C;f;(x) with variational
coefficientsC; of N orthonormal basis functionf(x). The
system of variational equations reads

With the N first polynomials, the Christoffel-Darboux rela-
tion leads to the property3],

N N—1
3, (Ty+Vy)Ci=EC, ) 2 PU)P(U) =[Nip(u)] 10 ®
P

whereTij=<fi|T|fj> and Vij:<fi|v|fj>- With a good basis Equation(8) provides a way of calculating the Christoffel

choice, this method can give accurate results but the calcflumPersk; entering the Gauss formuld). Now we intro-
lation of the potential matrix may be difficult and time con- dUce an infinitely differentiable bijective mapping-=t(x) of
suming. (a,b) on (c,d) and the orthonormal family

A Lagrange basis is defined as the associatioN afiesh _ 112
pointsx; and ofN Lagrange function$;(x), orthonormal on k() =[WOTpult(x) ©
some interval ,b). The infinitely differentiable functions ith the included weight
fi(x) satisfy the Lagrange conditions,
wW(X) = pt(x))t"(x), (10)

wheret’ is the derivative ot. Because of the freedom we
i.e., fi(x) vanishes at all mesh points exceptx;. The mesh  have in the choices op(u) and of t(x), it is possible to
points x; and constants,; provide a Gauss quadrature ap- design functionsp, with some definite properties.
proximation associated with the me$8], When the functionsp, are selected, Lagrange functions
are defined as

fi(x)) =N\ %5, (3)

b N
Ja gOOdx= 2, Ag(X0)- @ 12 b (t(0)

(t(x)—u)pi(up)’

which correspond to linear combinations of tipg. The
Lagrange mesh points are given by

W(X)
NiW(X;)

(11)

fi(X)=[
Because of condition&), the potential matrix is diagonal at
the Gauss approximatioi@),

b
Vij:Lfi(X)V(X)fj(X)dX%V(Xi)tsij , ) =t 1(u). 12

and the variational equatiortg) take a form similar to mesh One easily verifies with Eq$12) and (7) that condition(3)
equations as in finite-difference methods. With scaled basig satisfied. The orthonormality of thig follows from the
functionsh~Y2f;(x/h) defined over the intervab(,bh), the  fact that the Gauss approximation over,d) is exact for

Lagrange-mesh equations read p(u) multiplied by polynomials inu up to degree
N 2N-1 [20],
jgl [h_2T|J+V(hX|)5”]CJ:EC| (6)

N
b
[“Ho0t00ax= 3 ntifyxo=a,. @19
The scale factoh can often be treated as an approximate

variational parameter but the results are not very sensitive tQontrary to the case of classical polynomials, Thecannot

its precise value wheN is large enough. easily be obtained in compact form. We shall thus compute
The number of conditiong3) is much larger than the them numerically from

number of mesh points. Nevertheless, they are met in a num-

ber of cases: a Lagrange mesh can be associated with each b, ,

family of classical orthogonal polynomidB,4] and with the Tij= L fi O fj(x)dx. (14)
Fourier [3,5,13 and sinc[14] functions. Here we address a

general question: Can one associate a Lagrange mesh wif)so unlike the classical casgs], the Gauss approximation
other families of basis functions, such as, for example(s) s, in general, neither exact nor even very accurate in Eq.
shifted Gaussian functions? We show below that many newi4).

types of Lagrange meshes can be defined starting from non- The calculation of the zeros gfy follows a standard

classical orthogonal polyr_lomials. _ strategy[21]. The orthonormal polynomials are linked by
Let us consider a weight functiop(u) and the corre- the recurrence relations,

sponding normalized polynomialp,(u) orthogonal over
some interval ¢,d). Nonclassical orthogonal polynomials BiPr(U)=(u—a, ) pr_1(U) = Bx_1Pk-_2(u), (15
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TABLE I. Errors €, on energies of the Morse potenti@2) from variational calculations with bas{49)
and from the corresponding mesh calculations. The powers of 10 are indicated in brackets.

N a h € €5 €10 €15

Var. 10 0.3 0.12 p—-13] 6[—6]

Mesh 0.3 0.12 —-1[—-12] —1[-5]

Var. 20 0.4 0.11 —1[—18] 2[—11] 5[—-6]

Mesh 0.3 0.12 —2[—15] —4[—12] —4[—-T7]

Var. 30 0.5 0.10 L-19] —1[—15] 1[—-10] 1[-5]
Mesh 0.3 0.12 b—16] 2[—15] 2[—11] 4 —-6]
Var. 40 0.5 0.10 —5[—-20] —2[—15] 2[—12] 1[-9]
Mesh 0.3 0.13 —5[—14] 4[—-13] 5[—-13] 2[—-10]
Ref.[19] 80 —1[—11] —1[—-10] —2[—-10] —3[—10]

with p_4(u)=0 andpy(u)=1/8y. The coefficientse,, and  magnitude ofw(x). The numerical integrations in Eq&l6)
By are easily obtained with the Stieltjes proced{i22,18. to (18) and in Eq.(14) are performed with a constant step

The normalization coefficien8, is given by Ax. This technique is very accurate with infinitely differen-
) . tiable functions[23]. The Lagrange basis is then equivalent
2_ _ to the base$19) and(20). The derivatived (x) are calcu-
= du= dx. 16 . '
Fo fc plu)du L w(x)dx (18 lated with Eqs(11) and (21).

Karabulut and Siberf15] construct a Lagrange basis
By expressing all integrals with the variablgthe other co-  from shifted Gaussians with simple analytical expressions of
efficients can be obtained by recurrence, the , and B,. Their weight function is independent &f.
o Their mesh is different from the mesh deduced from Egs.
_ 2 (20) to (21). It can be shifted symmetrically with respect to
i Ja WOOt(){px-1[t(x) ]} dx 17) the origin but the basis then has no symmetry. Alternatively,
shifting their basis can make it equivalent to E¢E9) and
and (20) but the mesh is then asymmetric.
As an example, we consider a system of reduced mass

,3§= fbw(x){[t(x)—ak]pk_l[t(x)] in the Morse potentia{Ref. [19]),

— Br—1Pk—2[ t(x)]}2dx. (18) V(x)=D[exp—2ax)—2 exd —ax)+1], (22

The zerosy; are the eigenvalues of the symmetric tridiagonal
matrix with «; to ay on the diagonal ang@; to By_, off
diagonal.

As an application, we consider the interval ¢,%) and
the N shifted Gaussian functions,

where «=0.9374, D=wp/4, and u=a?Bl20 with B
=156.047 612535 and=0.000574 183 7286. These val-
ues precisely correspond to Table | of REE9]. Potential
(22) allows simple variational calculations and an exact
evaluation of the error.

xn(X)=exd — (x—an)?/2]. (19 Table | displays absolute erroes on the energies of the

N—-1

Pk

ground state and of the 5th, 10th, and 15th excited states for
[n=—(N—1)/2 to (N—1)/2, N even. The parameten different calculations with optimized parameterandh. For
controls the spacing-to-width ratio. The basis consisting omallN, the Lagrange mesh provides excellent results not far
the N functionsy,, is equivalent to the orthogonal basis, from those of the exact variational calculation, i.e., a varia-
) tional calculation performed with the nonorthogonal seNof
X ax ax basis functiongy,, with exact expressions for all matrix ele-
e(X)=exp — — || cosh — tanh = |, : : .

F{ 2 I‘( 2 ) I‘( 2 } ments. WherN increases, the nonorthogonality of the basis
prevents the use of the optimal valueagf~0.3) in calcula-
tions with 15 significant digits. No such problem exists in the

with k=0N—1, i.e., both bases span the same subspacgnesh approach. The mesh results become better than the
The polynomialspy are either even or odd and lead to sym-yariational results, except for small quantum numbers where
metric meshes. From E¢20), we choose(X) =tanh@x2),  they are limited by the accuracy on the zer@sr Ax
which maps -=,) on (-1,1). The weight function is =0.02). A similar accuracy requires a larger number of
defined as mesh points in Ref[19]. The Lagrange meshes inspired by
_ Ref.[15] provide slightly less good results.

Wiy (X) = Ay expl( —x?)[coshax/2) ]2, (21 Now we turn to a radial problem on the interval €0,
whereAy is a coefficient that can be chosen for convenience\.NIth the basis,
Notice that wy(x) depends onN. The choice Ay
=22N"2exf —(N—1)%a?/4] keeps constant the order of xn(r)=exd —(r—an)?/2]—exd — (r +an)?/2], (23
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TABLE IlI. Errors €, on energies of a radial Morse potential from variational calculations with (28is
and from two mesh calculatiorisee text Laguerre-mesh results from Reff§,6] are also displayed. Powers
of 10 are indicated in brackets.

N a h € € €5 €19

Var. 10 0.5 0.42 B-8] 5[ —6]

Mesh 1 0.5 0.42 B—7] 1[-6]

Mesh 2 0.5 0.42 R—7] —6[—6]

Var. 20 0.5 042  —1[—10] 1[-8] 6[—6]

Mesh 1 0.3 044  —4[—13] —1[-11] 4[-8]

Mesh 2 0.3 0.44  —9[—13] —3[-12] 2[—10]

Var. 30 0.5 0.42  —5[—10] 7[-9] 3[-7]

Mesh 1 0.3 0.49 B—14] —3[-12] —3[—9] 6[—7]
Mesh 2 0.3 0.46 B 15] o[ - 14] 5[ - 10] 3[-8]
(5,6] 40 0.04 1-15] —1[—14] —2[—10] -3[-7]

[n=1/2 to (N—1)/2, N ever. Lagrange meshes corre- Ues larger than the optimal one. The mesh calculation can be
sponding to this basis can be obtained in several ways. Firseerformed for the optima& and provides better results.

one can simply keep the positive sector of the previous mesh_In summary, a general procedure for deriving an infinity
and project the Lagrange functiorid¢1) on negative par- Of new Lagrange variational bases and the associated
ity [4] (Mesh 2. Second, one can apply the algorithm di- Lagrange meshes has been introduced. For large classes of

rectly. The basig23) is, for example, equivalent to the or- rthogonal or nonorthogonal bases, an equivalent orthogonal
thogonal basis Lagrange basis can be constructed, which yields a very

simple mesh approximation. Because of its orthogonality, the
e(r)=exp(—r2/2)sinh(ar/2)p,[sinfé(ar/2)], (24)  Lagrange basis does not suffer from the redundancy problem
of a nonorthogonal basis. Therefore, a Lagrange-mesh ap-

with k=0,N—1. This provides the weight proximation may provide more accurate results than the
variational calculation with the original nonorthogonal basis,
w(r)=exp —r?)sintf(ar/2) (25 which is restricted by the finite accuracy of computers. We

have applied the general technique to shifted Gaussians and

andt(r)=sint?(ar/2) (Mesh 2. obtained several meshes, one of which has been obtained

As an example, we consider a radial Morse potential withanalytically by other author§l5]. A comparison with varia-
equilibrium distance . as in Ref.[5]. It corresponds to the tional calculations on simple examples shows that the loss of
H, molecular ion witha=0.72,r,=2, D=0.10262, and accuracy due to the mesh approximation is surprisingly weak
2u=1836, precisely. Here, the analytical expressions of th@nd is sometimes compensated by a broader choice of values
eigenvalues are not exact but they are accurate to better thi¥ the variational parameters. The existence of a large num-
1015, Both mesh calculations are compared in Table I withber of meshes with additional flexibility that provide a high
an exact variational calculation performed with ba&ls). accuracy for well-conditioned problems and the fact that the

The errorse, with respect to the analytical expressions are-29range mesh method leads to sparse matrices in multidi-
displayed in Table II. The striking result is again that themenS|onaI problems should be useful in various areas of nu-

accuracy of the different Lagrange-mesh calculations is clos<ranerlcal physics.

to the accuracy of the variational calculation when the same e thank J. Devooght, M. Kruglanski, V. Melezhik, and

a value is used. A similar effect has already been observeg, Mund for pointing out useful references to us. This text
with the constant-step medd] and with the Laguerre presents research results of the Belgian Program on Interuni-

mesh[6]. Here, however, in the variational calculation, the versity Attraction Poles, initiated by the Belgian State Fed-
nonorthogonality of the basis restricts the choicedd val-  eral Services for Scientific, Technical, and Cultural Affairs.
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