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Lagrange meshes from nonclassical orthogonal polynomials
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The Lagrange-mesh numerical method has the simplicity of a mesh calculation and the accuracy of a
variational calculation. A flexible general procedure for deriving an infinity of new Lagrange meshes related to
orthogonal or nonorthogonal bases is introduced by using nonclassical orthogonal polynomials. As an appli-
cation, different Lagrange meshes based on shifted Gaussian functions are constructed. A simple quantum-
mechanical example shows that the Lagrange-mesh method may become more accurate than the original
variational calculation with a nonorthogonal basis.@S1063-651X~99!02706-3#

PACS number~s!: 02.70.2c, 03.65.Ge, 02.30.Mv, 31.15.Qg
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The continuous expansion of computing power leads
attempts for solving with numerical techniques increasin
complicated problems. Consequently, efficient numerical
proximations are needed more than ever. Ideally they sho
provide the highest accuracy with minimal computing effo
and maximal flexibility.

For well conditioned problems, i.e., when indefinitely d
ferentiable solutions exist almost everywhere, global me
ods involving information from the whole domain of defin
tion of the studied problem provide better accuracy th
local methods. Among global approaches, two important
efficient approximations are the collocation and variatio
~or Galerkin! methods@1,2#. Nearly optimal techniques ca
be looked for by keeping the advantages of both approac
such as in the Lagrange-mesh method.

The Lagrange-mesh method is an approximate variatio
calculation, which resembles a mesh calculation in the sp
of collocation @3–6#. In the context of quantum mechanic
it is strikingly simple because the potential matrix is diago
and only involves values of the potential at the differe
mesh points. These properties proceed from the existenc
a Lagrange basis, i.e., an orthonormal family of infinite
differentiable functions, which vanish at all mesh points b
one. When a variational calculation is performed with suc
basis, the use of the associated Gauss quadrature lead
diagonal potential matrix and to meshlike calculations.
spite of its extreme simplicity, this method is often very a
curate with rather small numbers of mesh points. Its accur
is comparable to the accuracy of the more complicated va
tional calculation performed with the associated Lagran
basis @5,6#.

The Lagrange-mesh method provides accurate results
a number of bound-state and scattering calculations
atomic and nuclear physics@3–12#. It should also be usefu
in other areas of physics. However, until now, the devel
ment of the method was hindered by the fact that onl
limited number of Lagrange meshes are available@13,14,3–
6#. Most of them are based on zeros of classical orthogo
polynomials @3–6#. The condition of existence of a
Lagrange mesh severely limited the number of possible
derlying variational bases and offered poor flexibility. N
alternative was available when the imposed repartition
mesh points did not match the physical properties of a pr
lem.
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The aim of the present paper is to overcome this limi
tion and to show that many more types of Lagrange mes
~infinitely many in principle! can be constructed with little
computational effort. These meshes are still indirectly ba
on orthogonal polynomials, which belong to the broader n
classical family, i.e., which do not satisfy a second-ord
differential equation. By selecting an appropriate weig
function and by introducing a change of variable in the
gument of the orthogonal polynomials, it becomes poss
to reproduce wide classes of variational bases. As an
ample, we shall apply the general algorithm to deriving
mesh related to shifted Gaussian functions and illustrate i
an elementary application of quantum mechanics~see Ref.
@6# for preliminary results!. Equally spaced shifted Gaussia
functions provide a flexible basis, which has proved usefu
different areas of atomic and nuclear physics. During
completion of this paper, Karabulut and Sibert published
striking analytical study of a mesh based on shifted Gau
ians @15#. Their mesh is different from the one we deriv
~see below! but the present algorithm also allows constru
ing the mesh of Ref.@15#.

The Lagrange-mesh approach offers a close simila
~and sometimes provides identical results! with the discrete-
variable representation~DVR! method @16,17#. The main
difference lies in the philosophy of the methods. T
Lagrange-mesh method is basically variational. Fulfilling t
condition of existence of a Lagrange basis entails a h
accuracy of the results~at the cost of an imposed mesh!. In
the DVR, the freedom of choice of the mesh is the m
important aspect but a good accuracy is obtained when
implicit Lagrange basis exists. The direct use of this ba
significantly simplifies the DVR. The Lagrange-mes
method may be considered as some accurate subset o
DVR. Let us also briefly mention two other approaches
lated to some extent with—but different from—the prese
paper. Schneider@18# uses a generalization of nonclassic
orthogonal polynomials. Weiet al. @19# employ a basis in-
spired from Lagrange polynomials. Both methods fall out
the Lagrange-mesh technique either because the Lagr
conditions are not always satisfied in Ref.@18# or because the
basis is not orthogonal in Ref.@19#.

Consider the one-dimensional Schro¨dinger equation,
7195 ©1999 The American Physical Society
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7196 PRE 59D. BAYE AND M. VINCKE
@T1V~x!#c~x!5Ec~x!, ~1!

whereT52d2/dx2 is the kinetic-energy operator,V(x) is a
local potential, andc(x) is a bound-state wave function a
energyE.

In a variational calculation, the wave function is appro
mated by a linear combination( iCi f i(x) with variational
coefficientsCi of N orthonormal basis functionsf i(x). The
system of variational equations reads

(
j 51

N

~Ti j 1Vi j !Cj5ECi , ~2!

whereTi j 5^ f i uTu f j& and Vi j 5^ f i uVu f j&. With a good basis
choice, this method can give accurate results but the ca
lation of the potential matrix may be difficult and time co
suming.

A Lagrange basis is defined as the association ofN mesh
pointsxi and ofN Lagrange functionsf i(x), orthonormal on
some interval (a,b). The infinitely differentiable functions
f i(x) satisfy the Lagrange conditions,

f i~xj !5l i
21/2d i j , ~3!

i.e., f i(x) vanishes at all mesh pointsxj exceptxi . The mesh
points xi and constantsl i provide a Gauss quadrature a
proximation associated with the mesh@3#,

E
a

b

g~x!dx' (
k51

N

lkg~xk!. ~4!

Because of conditions~3!, the potential matrix is diagonal a
the Gauss approximation~4!,

Vi j 5E
a

b

f i~x!V~x! f j~x!dx'V~xi !d i j , ~5!

and the variational equations~2! take a form similar to mesh
equations as in finite-difference methods. With scaled b
functionsh21/2f i(x/h) defined over the interval (ah,bh), the
Lagrange-mesh equations read

(
j 51

N

@h22Ti j 1V~hxi !d i j #Cj5ECi . ~6!

The scale factorh can often be treated as an approxima
variational parameter but the results are not very sensitiv
its precise value whenN is large enough.

The number of conditions~3! is much larger than the
number of mesh points. Nevertheless, they are met in a n
ber of cases: a Lagrange mesh can be associated with
family of classical orthogonal polynomial@3,4# and with the
Fourier @3,5,13# and sinc@14# functions. Here we address
general question: Can one associate a Lagrange mesh
other families of basis functions, such as, for examp
shifted Gaussian functions? We show below that many n
types of Lagrange meshes can be defined starting from
classical orthogonal polynomials.

Let us consider a weight functionr(u) and the corre-
sponding normalized polynomialspk(u) orthogonal over
some interval (c,d). Nonclassical orthogonal polynomia
u-

is

to

-
ach

ith
,
w
n-

possess two important properties, i.e., a simple three-t
recurrence relation@see Eq.~15! below# and the Christoffel-
Darboux relation@20#. Let us denote asui( i 51,N) the zeros
of pN(u),

pN~ui !50. ~7!

With the N first polynomials, the Christoffel-Darboux rela
tion leads to the property@3#,

(
k50

N21

pk~ui !pk~uj !5@l ir~ui !#
21d i j . ~8!

Equation ~8! provides a way of calculating the Christoffe
numbersl i entering the Gauss formula~4!. Now we intro-
duce an infinitely differentiable bijective mappingu5t(x) of
(a,b) on (c,d) and the orthonormal family

wk~x!5@w~x!#1/2pk„t~x!… ~9!

with the included weight

w~x!5r„t~x!…t8~x!, ~10!

where t8 is the derivative oft. Because of the freedom w
have in the choices ofr(u) and of t(x), it is possible to
design functionswk with some definite properties.

When the functionswk are selected, Lagrange function
are defined as

f i~x!5F w~x!

l iw~xi !
G1/2 pN„t~x!…

„t~x!2ui…pN8 ~ui !
, ~11!

which correspond to linear combinations of thewk . The
Lagrange mesh points are given by

xi5t21~ui !. ~12!

One easily verifies with Eqs.~12! and ~7! that condition~3!
is satisfied. The orthonormality of thef i follows from the
fact that the Gauss approximation over (c,d) is exact for
r(u) multiplied by polynomials in u up to degree
2N21 @20#,

E
a

b

f i~x! f j~x!dx5 (
k51

N

lkf i~xk! f j~xk!5d i j . ~13!

Contrary to the case of classical polynomials, theTi j cannot
easily be obtained in compact form. We shall thus comp
them numerically from

Ti j 5E
a

b

f i8~x! f j8~x!dx. ~14!

Also unlike the classical case@3#, the Gauss approximation
~4! is, in general, neither exact nor even very accurate in
~14!.

The calculation of the zeros ofpN follows a standard
strategy @21#. The orthonormal polynomials are linked b
the recurrence relations,

bkpk~u!5~u2ak!pk21~u!2bk21pk22~u!, ~15!
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TABLE I. Errors en on energies of the Morse potential~22! from variational calculations with basis~19!
and from the corresponding mesh calculations. The powers of 10 are indicated in brackets.

N a h e0 e5 e10 e15

Var. 10 0.3 0.12 9@213# 6@26#

Mesh 0.3 0.12 21@212# 21@25#

Var. 20 0.4 0.11 21@218# 2@211# 5@26#

Mesh 0.3 0.12 22@215# 24@212# 24@27#

Var. 30 0.5 0.10 1@219# 21@215# 1@210# 1@25#

Mesh 0.3 0.12 5@216# 2@215# 2@211# 4@26#

Var. 40 0.5 0.10 25@220# 22@215# 2@212# 1@29#

Mesh 0.3 0.13 25@214# 4@213# 5@213# 2@210#

Ref. @19# 80 21@211# 21@210# 22@210# 23@210#
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with p21(u)50 andp0(u)51/b0. The coefficientsak and
bk are easily obtained with the Stieltjes procedure@22,18#.
The normalization coefficientb0 is given by

b0
25E

c

d

r~u!du5E
a

b

w~x!dx. ~16!

By expressing all integrals with the variablex, the other co-
efficients can be obtained by recurrence,

ak5E
a

b

w~x!t~x!$pk21@ t~x!#%2dx ~17!

and

bk
25E

a

b

w~x!$@ t~x!2ak#pk21@ t~x!#

2bk21pk22@ t~x!#%2dx. ~18!

The zerosui are the eigenvalues of the symmetric tridiagon
matrix with a1 to aN on the diagonal andb1 to bN21 off
diagonal.

As an application, we consider the interval (2`,`) and
the N shifted Gaussian functions,

xn~x!5exp@2~x2an!2/2#. ~19!

@n52(N21)/2 to (N21)/2, N even#. The parametera
controls the spacing-to-width ratio. The basis consisting
the N functionsxn is equivalent to the orthogonal basis,

wk~x!5expS 2
x2

2 D FcoshS ax

2 D GN21

pkF tanhS ax

2 D G ,
~20!

with k50,N21, i.e., both bases span the same subsp
The polynomialspk are either even or odd and lead to sym
metric meshes. From Eq.~20!, we chooset(x)5tanh(ax/2),
which maps (2`,`) on (21,1). The weight function is
defined as

wN~x!5AN exp~2x2!@cosh~ax/2!#2N22, ~21!

whereAN is a coefficient that can be chosen for convenien
Notice that wN(x) depends on N. The choice AN
522N22 exp@2(N21)2a2/4# keeps constant the order o
l

f

e.

.

magnitude ofw(x). The numerical integrations in Eqs.~16!
to ~18! and in Eq.~14! are performed with a constant ste
Dx. This technique is very accurate with infinitely differen
tiable functions@23#. The Lagrange basis is then equivale
to the bases~19! and ~20!. The derivativesf i8(x) are calcu-
lated with Eqs.~11! and ~21!.

Karabulut and Sibert@15# construct a Lagrange bas
from shifted Gaussians with simple analytical expressions
the ak and bk . Their weight function is independent ofN.
Their mesh is different from the mesh deduced from E
~20! to ~21!. It can be shifted symmetrically with respect
the origin but the basis then has no symmetry. Alternative
shifting their basis can make it equivalent to Eqs.~19! and
~20! but the mesh is then asymmetric.

As an example, we consider a system of reduced masm
in the Morse potential~Ref. @19#!,

V~x!5D@exp~22ax!22 exp~2ax!11#, ~22!

where a50.9374, D5vb/4, and m5a2b/2v with b
5156.047 612 535 andv50.000 574 183 728 6. These va
ues precisely correspond to Table I of Ref.@19#. Potential
~22! allows simple variational calculations and an exa
evaluation of the error.

Table I displays absolute errorsen on the energies of the
ground state and of the 5th, 10th, and 15th excited states
different calculations with optimized parametersa andh. For
smallN, the Lagrange mesh provides excellent results not
from those of the exact variational calculation, i.e., a var
tional calculation performed with the nonorthogonal set oN
basis functionsxn with exact expressions for all matrix ele
ments. WhenN increases, the nonorthogonality of the ba
prevents the use of the optimal value ofa('0.3) in calcula-
tions with 15 significant digits. No such problem exists in t
mesh approach. The mesh results become better than
variational results, except for small quantum numbers wh
they are limited by the accuracy on the zeros~for Dx
50.02). A similar accuracy requires a larger number
mesh points in Ref.@19#. The Lagrange meshes inspired b
Ref. @15# provide slightly less good results.

Now we turn to a radial problem on the interval (0,`)
with the basis,

xn~r !5exp@2~r 2an!2/2#2exp@2~r 1an!2/2#, ~23!
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TABLE II. Errors en on energies of a radial Morse potential from variational calculations with basis~23!
and from two mesh calculations~see text!. Laguerre-mesh results from Refs.@5,6# are also displayed. Power
of 10 are indicated in brackets.

N a h e0 e1 e5 e10

Var. 10 0.5 0.42 3@28# 5@26#

Mesh 1 0.5 0.42 3@27# 1@26#

Mesh 2 0.5 0.42 2@27# 26@26#

Var. 20 0.5 0.42 21@210# 1@28# 6@26#

Mesh 1 0.3 0.44 24@213# 21@211# 4@28#

Mesh 2 0.3 0.44 29@213# 23@212# 2@210#

Var. 30 0.5 0.42 25@210# 7@29# 3@27#

Mesh 1 0.3 0.49 8@214# 23@212# 23@29# 6@27#

Mesh 2 0.3 0.46 6@215# 9@214# 5@210# 3@28#

@5,6# 40 0.04 1@215# 21@214# 22@210# 23@27#
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@n51/2 to (N21)/2, N even#. Lagrange meshes corre
sponding to this basis can be obtained in several ways. F
one can simply keep the positive sector of the previous m
and project the Lagrange functions~11! on negative par-
ity @4# ~Mesh 1!. Second, one can apply the algorithm d
rectly. The basis~23! is, for example, equivalent to the o
thogonal basis,

wk~r !5exp~2r 2/2!sinh~ar/2!pk@sinh2~ar/2!#, ~24!

with k50, N21. This provides the weight

w~r !5exp~2r 2!sinh2~ar/2! ~25!

and t(r )5sinh2(ar/2) ~Mesh 2!.
As an example, we consider a radial Morse potential w

equilibrium distancer e as in Ref.@5#. It corresponds to the
H2

1 molecular ion witha50.72, r e52, D50.102 62, and
2m51836, precisely. Here, the analytical expressions of
eigenvalues are not exact but they are accurate to better
10215. Both mesh calculations are compared in Table II w
an exact variational calculation performed with basis~23!.
The errorsen with respect to the analytical expressions a
displayed in Table II. The striking result is again that t
accuracy of the different Lagrange-mesh calculations is c
to the accuracy of the variational calculation when the sa
a value is used. A similar effect has already been obser
with the constant-step mesh@5# and with the Laguerre
mesh @6#. Here, however, in the variational calculation, t
nonorthogonality of the basis restricts the choice ofa to val-
A.
st,
sh

h

e
an

se
e
d

ues larger than the optimal one. The mesh calculation ca
performed for the optimala and provides better results.

In summary, a general procedure for deriving an infin
of new Lagrange variational bases and the associa
Lagrange meshes has been introduced. For large class
orthogonal or nonorthogonal bases, an equivalent orthog
Lagrange basis can be constructed, which yields a v
simple mesh approximation. Because of its orthogonality,
Lagrange basis does not suffer from the redundancy prob
of a nonorthogonal basis. Therefore, a Lagrange-mesh
proximation may provide more accurate results than
variational calculation with the original nonorthogonal bas
which is restricted by the finite accuracy of computers. W
have applied the general technique to shifted Gaussians
obtained several meshes, one of which has been obta
analytically by other authors@15#. A comparison with varia-
tional calculations on simple examples shows that the los
accuracy due to the mesh approximation is surprisingly w
and is sometimes compensated by a broader choice of va
for the variational parameters. The existence of a large n
ber of meshes with additional flexibility that provide a hig
accuracy for well-conditioned problems and the fact that
Lagrange mesh method leads to sparse matrices in mu
mensional problems should be useful in various areas of
merical physics.
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